Perturbation Theory

1. Conventional nondegenerate perturbation theory

Consider a general eigenvalue problem

$$
\begin{equation*}
L u=\lambda u \tag{1,1}
\end{equation*}
$$

Where L can be a regular matrix or a linear differential operator, and u is the eigenvector. It is well known that for any regular linear operator has a set of mutual orthogonal eigenvectors u_{j} that form a base for the space of functions. Mutual orthogonal means that $u_{i} u_{j}=0$, for $i \neq j$ If $u_{1}, u_{2}, u_{3} \ldots$ is an orthonormal, $u_{j}{ }^{2}=1$ base of eigenvector, then for (almost) any function ψ, we have:

$$
\psi=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}+\ldots
$$

The j 'th term is found by taking the dot product with u_{j}, which gives: $a_{j}=u_{j} \cdot \psi / u_{j}^{2}=u_{j} \cdot \psi$, since $u_{i} u_{j}=0$, for $i \neq j$, and $u_{j}{ }^{2}=1$
Suppose we have a differential operator L^{0}, where the eigenvalues $\lambda_{n}{ }^{0}$ and eigenfunctions $u_{n}{ }^{0}$ are known, and we have an operator L that is only slightly different from an operator L_{0}.
We then have the two equations:

$$
\begin{equation*}
L^{0} u_{n}^{0}=\lambda_{n}^{0} u_{n}^{0} \quad \text { and } \quad L u=\lambda u \tag{1,2}
\end{equation*}
$$

We wish to find an approximate solution to the second equation. We put

$$
\begin{equation*}
L=L^{0}+Q \tag{1.3}
\end{equation*}
$$

where Δ is supposed to be "small" compared to L. And let us assume that there exists a number δ less than one that in some manner represent the order of magnitude of $|Q / L|$

Then we assume that the eigenvalue λ, may be written as a series:

$$
\begin{equation*}
\lambda_{n}=\lambda_{n}{ }^{0}+\lambda_{n}{ }^{(1)}+\lambda_{n}^{(2)}+\ldots \tag{1,4}
\end{equation*}
$$

The upper index indicate the order of the approximation, like $1, \delta, \delta^{2} \ldots$
And the eigenfunctioins may have a series expansion:

$$
\begin{equation*}
u_{n}=u_{n}{ }^{0}+\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}+\ldots \tag{1.5}
\end{equation*}
$$

Notice that $u_{n}{ }^{0}$ is omitted from the sums,
Where again the upper index indicate the order of approximation $\delta, \delta^{2} \ldots$
We then substitute $(1,4)$ and (1.5) into $(1,3)$.

$$
\begin{equation*}
\left(L^{0}+Q\right)\left(u_{n}^{0}+\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}\right)=\left(\lambda_{n}^{0}+\lambda_{n}^{(1)}+\lambda_{n}^{(2)}+\ldots\right)\left(u_{n}{ }^{0}+\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}\right) \tag{1,6}
\end{equation*}
$$

The first order terms give:
From our suppositions we have $L^{0} u_{n}{ }^{0}=\lambda_{n}{ }^{0} u_{n}{ }^{0}$, so we are left with:

$$
\begin{equation*}
Q u_{n}^{0}+L^{0}\left(\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}\right)=\left(\lambda_{n}^{(1)}+\lambda_{n}^{(2)}+\ldots\right)\left(u_{n}^{0}+\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}\right) \tag{1.7}
\end{equation*}
$$

When we evaluate the expression after doing the operation with L^{0}, we obtain

$$
Q u_{n}{ }^{0}+\sum a_{m n}^{(1)} \lambda_{m}^{0} u_{m}^{0}+\sum a_{m n}^{(2)} \lambda_{m}^{1} u_{m}^{0}+\ldots=\left(\lambda_{n}^{(0)}+\lambda_{n}^{(1)}+\lambda_{n}^{(2)}+\ldots\right)\left(u_{n}{ }^{0}+\sum a_{m n}^{(1)} u_{m}^{0}+\sum a_{m n}^{(2)} u_{m}^{0}+\ldots\right)
$$

Keeping only the first order term we find:

$$
\begin{equation*}
Q u_{n}{ }^{0}+\sum a_{m n}^{(1)} \lambda_{m}^{0} u_{m}^{0}=\lambda_{n}^{(0)} u_{n}{ }^{0}+\lambda_{n}{ }^{(0)} \sum a_{m n}^{(1)} u_{m}^{0} \tag{1.8}
\end{equation*}
$$

If we dot both sides with u_{n}^{0} we obtain, since $u_{n}^{0} \cdot u_{m}^{0}=0$ for $n \neq m$

$$
\begin{equation*}
u_{n}{ }^{0} \cdot Q u_{n}{ }^{0}+u_{n}{ }^{0} \cdot \sum a_{m n}^{(1)} \lambda_{m}^{0} u_{m}^{0}=\lambda_{n}^{(1)} u_{n}{ }^{0}+\lambda_{n}{ }^{(1)} \sum a_{m n}^{(1)} u_{m}^{0} \tag{1.9}
\end{equation*}
$$

All the dot products $u_{n}^{0} \cdot u_{m}^{0}=0$ for $n \neq m$, and we are left with.

$$
\begin{equation*}
u_{n}{ }^{0} \cdot Q u_{n}{ }^{0}=\lambda_{n}^{(1)} \tag{1.10}
\end{equation*}
$$

This is a very simple result. The first order correction to the eigenvalue can then be written as

$$
\lambda_{n}^{(1)}=u_{n}^{0} \cdot Q u_{n}^{0}+O\left(Q^{2}\right)
$$

Where " O " is read order of. To Find the first order corrected eigenvector, we dot the first order equation (1.8) with $u_{0}^{p}, \quad p \neq n$

$$
u_{m}^{0} \cdot Q u_{n}{ }^{0}+u_{m}^{0} \cdot \sum a_{m n}^{(1)} \lambda_{m}^{0} u_{m}^{0}=u_{m}^{0} \cdot \lambda_{n}^{(1)} u_{n}^{0}+u_{m}^{0} \cdot \lambda_{n}^{(1)} \sum a_{m n}^{(1)} u_{m}^{0}
$$

Which gives

$$
\begin{aligned}
& u_{p}^{0} \cdot Q u_{n}^{0}+u_{p}^{0} \cdot \sum a_{m n}^{(1)} \lambda_{m}^{0} u_{m}^{0}=u_{p}^{0} \cdot \lambda_{n}^{(1)} u_{n}{ }^{0}+u_{p}^{0} \cdot \lambda_{n}^{(1)} \sum a_{m n}^{(1)} u_{m}^{0} \\
& u_{p}^{0} \cdot Q u_{n}^{0}+a_{p n}^{(1)} \lambda_{p}^{0}=\lambda_{n}^{(0)} a_{p n}^{(1)} \Leftrightarrow \\
& u_{p}^{0} \cdot Q u_{n}^{0}=\left(\lambda_{n}^{0}-\lambda_{p}^{(0)}\right) a_{p n}^{(1)} \Leftrightarrow \text { Assuming that } \lambda_{n}^{0} \neq \lambda_{p}^{(0)} \\
& a_{p n}^{(1)}=\frac{u_{p}^{0} \cdot Q u_{n}^{0}}{\lambda_{n}^{0}-\lambda_{p}^{(0)}}
\end{aligned}
$$

We can see from $(1,9)$ and (1.10) that the perturbation Q may be considered small the numbers $u_{p}^{0} Q u_{n}^{0}$ are considered small compared to $\lambda_{n}^{0}-\lambda_{p}{ }^{(0)}$.

(1.11) Mathematical example.

Let there be given a matrix operator $L=\left(\begin{array}{cc}2+\varepsilon & 1-\varepsilon \\ 1-\varepsilon & 2+2 \varepsilon\end{array}\right)$ where $\varepsilon \ll 1$, and $L^{0}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) \quad$ and therefore $Q=\varepsilon\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$
The eigenvalues $\lambda_{1}^{0}, \lambda_{2}^{0}$, are given by the determinant:
$\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0 \Leftrightarrow(2-\lambda)^{2}-1=0 \Leftrightarrow \lambda=1 \vee \lambda=3$
This correspond to the eigenvectors: $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{u_{1}^{(1)}}{u_{2}^{(1)}}=\binom{u_{1}^{(1)}}{u_{2}^{(1)}}$ and $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{u_{1}^{(2)}}{u_{2}^{(2)}}=3\binom{u_{1}^{(2)}}{u_{2}^{(2)}}$
$2 u_{1}^{(1)}+u_{2}^{(1)}=u_{1}^{(1)} \wedge u_{1}^{(1)}+2 u_{2}^{(1)}=u_{2}^{(1)} \quad \vee \quad 2 u_{1}^{(2)}+u_{2}^{(2)}=3 u_{2}^{(2)} \wedge u_{1}^{(2)}+2 u_{2}^{(2)}=3 u_{2}^{(2)}$
$u_{1}^{(1)}+u_{2}^{(1)}=0 \wedge u_{1}^{(1)}+u_{2}^{(1)}=0 \quad \vee \quad 2 u_{1}^{(2)}-2 u_{2}^{(2)}=0 \wedge \quad u_{1}^{(2)}-u_{2}^{(2)}=0$
They have the solution $(1,-1)$ and $(1,1)$ and normalized:
From the general formalism, we get: $\binom{u_{1}^{(1)}}{u_{2}^{(1)}}=\frac{1}{\sqrt{2}}\binom{1}{-1}$ and $\binom{u_{1}^{(2)}}{u_{2}^{(2)}}=\frac{1}{\sqrt{2}}\binom{1}{1}$
Then by the general formalism:

$$
\begin{aligned}
& \lambda_{1}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right) \varepsilon\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{\varepsilon}{2}\left(\begin{array}{ll}
2 & -3
\end{array}\right)\binom{1}{-1}=\frac{5}{2} \varepsilon \\
& \lambda_{2}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \varepsilon\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{\varepsilon}{2}\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{-1}=\frac{1}{2} \varepsilon
\end{aligned}
$$

So that

$$
\lambda_{1}=3+\frac{5}{2} \varepsilon+\ldots \quad \lambda_{2}=1+\frac{1}{2} \varepsilon+\ldots
$$

Also

$$
\begin{aligned}
& a_{21}^{(1)}=\frac{u_{2} Q u_{1}}{\lambda_{2}^{0}-\lambda_{1}^{0}}=\frac{\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \varepsilon\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-1}}{3-1}=-\frac{\varepsilon}{4} \\
& \left.a_{12}^{(2)}=\frac{u_{1} Q u_{2}}{\lambda_{1}^{0}-\lambda_{2}^{0}}=\frac{\frac{1}{\sqrt{2}}(1}{}-1\right) \varepsilon\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1} \\
& 1-3
\end{aligned}=\frac{\varepsilon}{4}, \begin{aligned}
& u_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}-\frac{\varepsilon}{4} \frac{1}{\sqrt{2}}\binom{1}{-1} \approx \frac{1}{\sqrt{2}}\binom{1-\frac{\varepsilon}{4}}{1+\frac{\varepsilon}{4}} \\
& u_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}+\frac{\varepsilon}{4} \frac{1}{\sqrt{2}}\binom{1}{1} \approx \frac{1}{\sqrt{2}}\binom{1+\frac{\varepsilon}{4}}{-1+\frac{\varepsilon}{4}}
\end{aligned}
$$

